Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Studies in rodents and captive primates suggest that the early-life social environment affects future phenotype, potentially through alterations to DNA methylation. Little is known of these associations in wild animals. In a wild population of spotted hyenas, we test the hypothesis that maternal care during the first year of life and social connectedness during two periods of early development leads to differences in DNA methylation and fecal glucocorticoid metabolites (fGCMs) later in life. Here we report that although maternal care and social connectedness during the den-dependent life stage are not associated with fGCMs, greater social connectedness during the subadult den-independent life stage is associated with lower adult fGCMs. Additionally, more maternal care and social connectedness after den independence correspond with higher global (%CCGG) DNA methylation. We also note differential DNA methylation near 5 genes involved in inflammation, immune response, and aging that may link maternal care with stress phenotype.more » « less
-
Abstract Environmental factors early in life can have lasting influence on the development and phenotypes of animals, but the underlying molecular modifications remain poorly understood. We examined cross‐sectional associations among early life socioecological factors and global DNA methylation in 293 wild spotted hyenas (Crocuta crocuta) in the Masai Mara National Reserve, Kenya, grouped according to three age classes (cub, subadult and adult). Explanatory variables of interest included annual maternal rank based on outcomes of dyadic agonistic interactions, litter size, wild ungulate prey density and anthropogenic disturbance in the year each hyena was born based on counts of illegal livestock in the Reserve. The dependent variable of interest was global DNA methylation, assessed via the LUminometric Methylation Assay, which provides a percentage methylation value calculated at CCGG sites across the genome. Among cubs, we observed approximately 2.75% higher CCGG methylation in offspring born to high‐ than low‐ranking mothers. Among cubs and subadults, higher anthropogenic disturbance corresponded with greater %CCGG methylation. In both cubs and adults, we found an inverse association between prey density measured before a hyena was 3 months old and %CCGG methylation. Our results suggest that maternal rank, anthropogenic disturbance and prey availability early in life are associated with later life global DNA methylation. Future studies are required to understand the extent to which these DNA methylation patterns relate to adult phenotypes and fitness outcomes.more » « less
An official website of the United States government
